首页 » 黑洞与时间弯曲 » 黑洞与时间弯曲全文在线阅读

《黑洞与时间弯曲》第12章 黑洞蒸发

关灯直达底部

视界裹在

慢慢消失的

辐射和热粒子的大气里,

黑洞在收缩然后爆炸

1970年11月的一个晚上,霍金正准备睡觉,忽然有了一个想法,它来得那么急,令他差点儿喘不过气来,他还从没遇到过一个思想来得这么快的。1

睡觉对霍金来说也真不容易。他患了肌萎缩性脊髓侧索硬化(ALS),支配肌肉的神经逐渐被破坏,一块块肌肉失去了活力。他两腿颤栗着慢慢地移动,刷牙时还得用一只手撑着桌台;他紧紧抓着床柱,脱去衣服,然后艰难地套进睡衣,爬上床。那天晚上,他比平常动作还慢,因为满脑子都是那个思想。这思想令他狂喜,但他没告诉妻子简,那会挨骂的,因为她满以为他会专心去睡觉。

那一夜,他醒着躺了好几个小时,睡不着。他的思维还徜徉在那个思想的枝枝叶叶上,还在寻找它与其他事物的联系。

这个思想是一个简单问题引发的。当两个黑洞碰撞结合成一个黑洞时,会产生多少引力辐射(时空曲率波)?霍金已经大概知道,最后那个黑洞从某种意义说比原来两个黑洞之“和”更大,但那是什么意义呢?关于产生了多少引力辐射,它又告诉他什么呢?

于是,在准备睡觉时,他想到了。突然,一系列的图景在他头脑里合成,产生了那个思想:更大的是黑洞视界的面积。他确信这一点,景象和图画已经形成了一个不容置疑的数学证明。不论原来两个黑洞质量多大(相同或大不相同),不论黑洞如何旋转(同向、反向或是根本不转动),也不论它们如何碰撞(正碰还是斜碰),最终黑洞视界的面积一定总是大于原来黑洞视界面积之和。那又怎么样呢?霍金的头脑还在这个面积增加定理中徜徉时就已经认识到,那太了不起了。

首先,最后的黑洞为了有更大的视界面积,一定要有很大的质量(或等价地说,很大的能量),这意味着作为引力辐射喷射出去的能量不太多。但“不太多”也不是太少。霍金通过把他新的面积增加定理与用面积和自旋表达的描述黑洞质量的方程结合,计算出原来两个黑洞质量的50%可以转化为引力波能量,只为最后那个黑洞留下50%的质量。1

在那个11月的不眠之夜后的几个月里,霍金又发现了他那思想的另一些枝叶。最重要的也许是他为下面这个问题找到了一个新答案:当黑洞是“动态”的时候,也就是,当它大幅度振动时(在碰撞中这是一定会发生的),或者当它快速增长时(当它最初由坍缩恒星产生时,这也是可能的),该如何定义黑洞视界的概念?

准确而成功的定义是物理学研究的基础。闵可夫斯基只是在定义了两个事件的绝对间隔后(卡片2.1)才发现,虽然空间和时间是“相对的”,但可以统一为一个“绝对的”时空。爱因斯坦只是在定义了自由下落粒子的轨迹是直线后(卡片2.2),才发现时空是弯曲的(图2.5),从而才创立了他的广义相对论。霍金也是在定义了动态黑洞的视界概念后,才能和别人去探索当黑洞受碰撞或下落碎屑的打击时,它会如何改变?

1970年11月以前,大多数物理学家都跟着彭罗斯,2认为黑洞视界是“试图逃逸黑洞的光子最后被引力拉下来的地方”。霍金在这几个月间认识到,这个旧的视界的定义钻进了理性的死胡同。他照它本来的意思,为它取了一个略带轻蔑的名字,这个名字留下来了。他称它为显视界。2

霍金小看它是有根据的。首先,显视界是相对概念,而不是绝对的。它的位置依赖于观测者的参照系;下落的观测者与静止在黑洞外的观测者可能会看到它处在不同的位置。第二,当有物质落进黑洞时,显视界将突然无任何征兆地从一个位置跳到另一个位置——这种奇异的行为,是不容易认识的。第三,也是最重要的一点,显视界同为霍金带来新思想的那些凝结在一起的智力图景,没有任何联系。

相比之下,霍金关于视界的新定义是绝对的(在所有参照系中都相同),不是相对的,所以他称它为绝对视界。霍金认为,绝对视界很优美。它有一个优美的定义:它是“时空中能否向遥远宇宙发送信号的事件之间的分界(视界外的事件能发送,而视界内的事件不能)。”3它还有一个优美的演化:当黑洞吞噬物质或与另一黑洞或其他事物碰撞时,绝对视界将以一种光滑、连续而不是突然、跳跃的方式发生形状和大小的改变(卡片12.1)。

卡片12.1 新生黑洞的绝对视界和显视界

下面的时空图描绘了球状恒星形成球状黑洞的坍缩,请与图6.7比较。点线是外出的光线,换句话说,它们是光子的世界线(通过时空的轨迹)——这种最快的信号可以径向向外发送到遥远的宇宙。对于“理想的逃逸”,我们理想化地认为光子不被任何恒星物质吸收和散射。

显视界(左图)是想逃脱黑洞的外出光线(如向外的QQ′和RR′)被拉向奇点的最外边界。显视界是恒星表面收缩经过临界周长时在E处突然完全生成的。绝对视界(右图)是能向遥远宇宙发送信号的事件(如事件P和S,沿光线PP′和SS′发送信号)和不能向遥远宇宙发送信号的事件(如Q和R)之间的分界。绝对视界在事件C的恒星中心生成,比恒星收缩到临界周长早一些。绝对视界生成时只是一点,然后像吹气的气球那样逐渐膨胀。当恒星收缩到临界周长(圆E)时,它也完全出现在恒星表面,这时不再扩张,以后就与突然形成的显视界一致。

更重要的是,绝对视界完全符合霍金的新思想:

霍金从凝结在他头脑中的图景看到,绝对视界(而不一定是显视界)的面积不仅在黑洞碰撞和结合时增大,而且在黑洞诞生时,在物质或引力波落下来时,在宇宙的其他事物的引力掀起潮汐时,在从它外面的空间旋涡中提取旋转能量时,都会增大。实际上,绝对视界的面积几乎总是增大,而永远不会减小。物理原因很简单:黑洞遭遇的任何事物都穿过它的绝对视界向内发送能量,任何能量都无法回到外面来。由于所有形式的能量都产生引力,这意味着黑洞引力在不断加强,因而相应地它的表面积也不断地增加。

更准确地说,霍金的结论是:(在任何人的参照系中),在任何空间区域和时刻测量所有黑洞的绝对视界的面积,并把这些面积加到一起得一个总面积。然后,你可以等任意长的时间再测量这些绝对视界的面积并把它们加起来,假如在两次测量间没有黑洞从这一空间区域的“围墙”转移出去,那么视界的总面积不会减少,而几乎总会增加,至少增加一点儿。

霍金很清楚地知道,不论选择哪种视界的定义,是绝对的,或者显的,都不会以任何方式影响对人类或其他生物可能进行的任何实验结果的预言。例如,它不会影响对在黑洞碰撞中产生的引力波(第10章)的预言,也不会影响对落进黑洞视界的热气体发出的X射线数量(第8章)的预言。但是,定义的选择却关乎理论物理学家从爱因斯坦广义相对论方程演绎黑洞行为特征是费力还是轻松。在理论家用以指导研究的规范里,他所选择的定义将成为决定性的工具。它影响他们的思维图景,影响他们在与别人交流时说的话,也影响他们直觉的飞跃。在这一点上,霍金相信,新的绝对视界因它连续增长的面积,比旧的不连续跳跃的显视界更优越。

思考绝对视界并发现它们面积增加的物理学家,史蒂芬·霍金不是第一个。牛津大学的彭罗斯和加拿大艾伯塔大学的伊斯雷尔在霍金那个11月的不眠之夜以前就已经做过了。4霍金的发现实际也在很大程度上靠了彭罗斯打下的基础(第13章)。然而,不论彭罗斯还是伊斯雷尔,都没认识到面积增加定理的意义和力量,他们也没发表这个结果。为什么呢?他们的思想死抱着显视界作为黑洞表面,而把绝对视界当做某个无关紧要的辅助性概念,从而也不认为绝对视界面积的增加有多大意思。跟着我们这一章,你会看到他们犯了一个多么可怕的错误。

为什么彭罗斯和伊斯雷尔那么喜欢显视界呢?因为它曾在一个惊人发现里充当主角。那是彭罗斯1964年的一个发现:广义相对论定律迫使每个黑洞在中心有一个奇点。5我将在下一章讨论彭罗斯的发现和奇点的本质。我现在主要说的是,显视界显示了威力,而彭罗斯和伊斯雷尔被这威力蒙蔽了,没能想到要放弃它作为黑洞表面的定义。

他们特别不能想象放弃显视界而赞同绝对视界。为什么呢?因为绝对视界似乎自相矛盾地违背了我们信奉的结果不得先于原因的观念。当物质向黑洞落下时,绝对视界就开始增长(“结果”),而这时物体还没有到达它(“原因”)呢。视界在期待中增长,物质马上会被吞没,黑洞引力也将随之而增强(卡片12.2)。

彭罗斯和伊斯雷尔知道这个表面的矛盾是从哪儿来的。正是那个绝对视界的定义依赖于未来发生的事情:信号最终能否逃向遥远的宇宙。用哲学名词来说,这是一个目的论的定义(依赖于“最终原因”的定义),它使视界演化也是目的论的。由于现代物理学中极少出现目的论观点,所以彭罗斯和伊斯雷尔会怀疑绝对视界的价值。

卡片12.2 吸积黑洞显视界和绝对视界的演化6

下面的时空图说明了显视界的跳跃性演化和绝对视界的目的性演化。在某一初始时刻(近图底的一张水平面上),一个非旋转老黑洞为薄层球状物质外壳所包围。外壳像橡皮气球,而黑洞像气球中心的一个陷坑。黑洞引力作用在外壳(气球),使它收缩并最终将它吞没(就像气球落进陷坑)。显视界(向外的光线——图中点线——的最后一道屏障)在收缩外壳到达最后黑洞临界周长位置的瞬间突然发生不连续的跳跃,绝对视界(能否向遥远宇宙发送光线的事件的分界)在黑洞吞没外壳前开始扩张,在扩张中等待吞噬,然后,当黑洞吞没外壳时,它也停在跳跃的显视界的位置。

霍金是大胆的思想家,假如他感觉那些激进的新方向是对的,他会比大多数物理学家更乐意走上那些方向。对他来说,绝对视界的“滋味”不错,尽管有点儿“烈”,他还是喜欢,而且有了回报。在几个月里,他和哈特尔根据爱因斯坦广义相对论定律导出了一系列美妙的方程,描绘在吞没下落的物质碎片和引力波之前,在受其他物体引力作用之前,绝对视界是如何连续而光滑地扩张和改变形状的。7

1970年11月,霍金作为物理学家才刚迈出满意的一步,他已经有过一些重大发现,但还没成为主角。随着这一章的脚步,我们会看着他成为一名主角。

失去活动能力的霍金怎么能在思想和直觉上超越像彭罗斯、伊斯雷尔和泽尔多维奇那样的走在他前头的同行和竞争者呢?他们能用自己的双手,能画图,能做很长的计算——那些计算记录着过程中相互关联的一些结果,他们可以追溯这计算过程,检查一个个结果,然后综合成一个最终结果;我不敢想象谁能在头脑中完成这些计算。到70年代初,霍金的手差不多已经废了,画不了图,也写不了方程。他的研究只能完全在头脑里进行。

手的能力是慢慢丧失的,所以霍金有时间来适应。他逐渐练就一种与其他物理学家不同的思维方式:为了自己的思考,他以新的直觉的思维图像和方程取代了纸上的图画和方程。霍金的思维图景和方程,在某些问题上比旧的书面的东西更有力量,但对另外的问题就要差一些。他还慢慢学会了将精力集中在他的新方式更能显示力量的问题,那力量是别人无法赶得上的。

霍金的瘫痪在其他方面帮了他的忙。他自己常说,它让他从为大学生讲课的义务中解脱了出来,从而能比健康的同事们有更多的自由时间来做研究。更重要的也许是,疾病改变了他的生活态度。

1980年,霍金与妻子简和儿子Timonthy在英国剑桥。[K·索恩摄]

1963年,霍金上剑桥大学研究生院不久就患了ALS。ALS是一类运动神经元疾病的总称,大多数患者很快就会死去。想到只有几年的生命,霍金首先失去了对生活和物理学的热情。然而,1964~1965年冬,发现他患的是一种罕见的ALS病例,它逐渐破坏中枢神经系统对肌肉的支配能力,需要很多年,而不是几年。生活突然精彩了,霍金像一个健康快乐的研究生一样,带着从未有过的巨大活力和热情又回到物理学来了。生活重新开始,他和简(Jane Wilde)结婚了。简是他患ALS后不久认识的,得病初期就爱上了她。

与简的结合,是霍金在60、70和80年代成功和幸福的基础。她在他身体遭遇的不幸中为他带来了正常的家庭和生活。

我一生中见过的最幸福的笑是在史蒂芬的脸上。那是1972年8月的一天晚上,在法国阿尔卑斯山下。那天,简、我和他们的两个大孩子罗伯特和露茜游了一天下山回来。因为太笨,我们错过了最后一趟下山的雪橇,只好步行1 000米下山。当简、罗伯特和露茜走进饭厅时,霍金正在摆弄他的晚餐。他先还在替我们着急,看到他们进来时,却忍不住大笑起来,眼泪都流出来了,饭也吃不下了。

霍金的手脚都动不了,然后又逐渐失去了声音。1965年6月,我们第一次见面时,他拄着根手杖走路,声音只是略有颤抖。1970年,他得靠四腿的架子才能走路。到1972年,他只能坐在自动轮椅上,而且基本上不能写字了,但还能较轻松地自己进食,大多数地道说英语的人还能听懂他说话,当然有点儿困难。1975年,他不能自己进食了,也只有习惯了他讲话的人才能听懂他说什么。1981年,除非在绝对安静的屋子里,不然,他的话,我听起来也很费劲;只有长期同他在一起的人才会觉得容易些。到1985年,他的肺不能自动排气,需要切开气管,通过有规则的吸气清除气流障碍。手术的代价太高了:他完全失去了声音。他只得靠为他设计的一台计算机语音合成器来说话,抱歉的是说话迟钝,而且带着美国口音。他通过握在手上的简单开关控制计算机,在屏幕上打出一串串单词,然后用开关选出他需要的词组成句子。这是一个痛苦缓慢的过程,却很有效。他一分钟最多能造一个简单句子,但他的句子从合成器读来还是清楚的,而且很优美。

说话能力退化了,霍金学会了把每个句子都存起来。他找到了一种比他患病初期更清楚、更简洁的思想表达方式。随着清楚而简洁的表达,他的思想也更清晰,对同事们的影响也更大——但似乎也越来越费解了:有时,当他提出对某个深刻问题的判断时,我们这些同行要在想很久、做许多计算之后才能确定他是在猜想,还是已经有了强有力的证据。有时候他不告诉我们,而我们偶尔也怀疑他是不是在拿他绝对独特的思想跟我们开玩笑。毕竟,他还保留着在牛津读大学时那种讨人喜欢的顽皮和即使在患难时也没离开过他的幽默。(在支气管手术前,我已经开始难得听懂他的话了,有时得反反复复对他说:“史蒂芬,我还是没听懂;请再说一遍。”他有点儿泄气,但还是不断重复,直到我恍然大悟:原来他在给我讲一个精彩的异乎寻常的小笑话,当我终于笑了,他也愉快地笑了。)

我在上面称赞了霍金在思想和直觉上超越同行竞争者的能力,但我现在应该承认,他并不总是在赢,也有输的时候。他最大的一次失败可能是败在惠勒的研究生贝肯斯坦(Jacob Beken-stein)手下。但我们将看到,在那次失败中,霍金获得了一个更大的胜利:发现黑洞蒸发。本章剩下的篇幅,就是讲这一发现的曲折经过。

霍金失败的战场在黑洞热力学。热力学是一组关于大量原子的随机的统计行为的定律,如组成房间里的空气的原子或组成整个太阳的原子。原子的众多统计行为中,包括由热引起的随机跳跃,相应地,热力学定律也包括关于热的定律,因此才有热力学这个名称。

在霍金发现面积定理的前一年,普林斯顿惠勒小组里的19岁研究生克里斯托多罗(Demetrios Christodoulou)注意到,描述黑洞性质缓慢变化(如它缓慢吸积气体)的方程很像某些热力学方程。8它们之间的相似是很明显的,但除了认为巧合外,找不到更多的理由。

霍金的面积定理又加强了这种相似:面积定理很像热力学第二定律。实际上,在本章前面的表述中,只要把“视界面积”换成“熵”,面积定理就变成了热力学第二定律:(在任何人的参照系中),在任何空间区域和时刻测量区域内所有事物的总熵。然后,你可以等任意长的时间再来测量,假如在两次测量间没有事物从你的空间区域的“围墙”跑出去,那么总熵不会减少,而几乎总会增加,至少增加一点儿。

那个增加的“熵”说的是什么东西呢?它是一定空间区域的“随机性”的总量。熵增加意味着事物在不断地变得越来越随机。

更准确些说(卡片12.3),熵是一定空间区域内所有原子和分子在不改变区域宏观表现情况下的分布方式的数目的对数。4如果原子和分子可能的分布方式多,微观的随机性就大,熵也就大。

熵增加定律(热力学第二定律)力量很大。举例说,假定一间屋子里有空气和几张皱巴巴的报纸,它们包含的熵小于报纸在空气中燃烧形成二氧化碳、水蒸气和一点儿灰后所包含的熵。换句话说,当屋子里原来是空气和报纸时,分子和原子的随机分布方式比最后在空气、二氧化碳、水蒸气和灰的情况下少。这也是为什么纸很容易点着而自然燃烧,而燃烧却不容易自然地倒过来从二氧化碳、水、灰和空气还原成纸。熵在燃烧中增加,在还原中减小,所以燃烧会发生,而还原却不能。

1970年11月,霍金立即就注意到了热力学第二定律和他的面积增加定理之间的相似性,但他显然认为这只是一种巧合。他想,谁要是说黑洞视界就是某种意义的黑洞的熵,那他一定是疯了,至少是昏了头。是的,毕竟黑洞没什么随机的东西。黑洞倒是随机的对头,是简单性的化身。一旦黑洞处于一种宁静状态(通过发出引力波,图7.4),它就完全“无毛”了:一切性质都由三个数决定:质量、角动量和电荷。黑洞无论如何没有随机性。

卡片12.3 玩具屋的熵

一间正方形的玩具屋里有20个玩具。屋子的地板铺着100块大瓷砖(每边10块)。爸爸打扫完屋子,把玩具放在最北的那行地砖上。他不在乎哪个玩具放在哪块砖,所以玩具完全是随机堆在一起的。随机性的一种度量是它们有多少种堆放方式(不论哪种方式,爸爸都一样满意),也就是,20个玩具放在北边那行的10块地砖上所能有的分布方式的数目,它是10×10×…×10,也就是1020,因为每个玩具都有10种方式。

这个1020就是对玩具的随机性的一种描述。然而这是一个很难把握的描述,因为1020太大了。更容易把握的是它的对数,也就是多少个10的因子乘起来能得1020,那就是20。玩具在地砖上堆放方式的数目的对数,就是玩具的熵。

这时候,孩子进屋来玩儿,把玩具扔得到处都是,然后他又走了。爸爸回来看见一团糟。现在的玩具比先前更混乱了,它们的熵增加了。爸爸不管哪个玩具在哪儿,他看到的是玩具随意地分散在整个屋子里。它们有多少种不同的分布方式呢?20个玩具分散在100块地砖上,有多少种方法?100×100×…×100,每个玩具100种,那么总数就是10020=1040,它的对数是40,于是孩子将玩具的熵从20增加到了40。

“那有什么,他爸爸接着会整理房间的,于是玩具的熵又减到20,”你大概会说,“这不就违反了热力学第二定律吗?”根本没有。爸爸可以通过整理将玩具熵减回来,但他的身体和屋子里的空气的熵却增加了:为把玩具放回原来的地方,爸爸得“燃烧”一些体内脂肪来获得能量。燃烧将有机的脂肪转化为无机的废物,如他在屋子里随机呼出的二氧化碳。结果,爸爸和屋子的熵的增加(原子和分子的可能分布数的增加)远远抵消了玩具熵的减小。

贝肯斯坦不服,9在他看来,黑洞的面积在某种深层意义上就是它的熵——或者更准确些说,是它的乘了某个常数的熵。贝肯斯坦论证说,假如不是这样,假如黑洞像霍金说的那样没有熵(没有任何随机性),那么黑洞就可用来减少宇宙的熵,这样就违背了热力学第二定律。我们只需要将从某个空间来的所有空气分子装进一个小口袋然后扔进黑洞就行了。口袋落进黑洞时,这些气体分子和它们携带的熵便从宇宙中消失了;假如黑洞不增加熵来补偿这些损失,那么宇宙的熵就减少了。贝肯斯坦认为,这样违背热力学第二定律是很不令人满意的。为了保住第二定律,黑洞必须拥有熵,在气体落进视界时它会增大;而在贝肯斯坦眼里,最有希望成为熵的候选者就是黑洞表面的面积。

根本不是那样的,霍金答话了。我们能通过把气体分子扔进黑洞而失去它们,当然也可以失去熵。霍金认为,这正是黑洞的本质,我们只能接受违反热力学第二定律的事实,那是黑洞性质要求的——除此而外,它也没有任何严重的后果。例如,在通常情形,违反热力学第二定律可能允许制造永动机,但即使黑洞破坏了第二定律,永动机也是不可能的。这种破坏只是物理学定律的一个小小特例,有这些特例,物理学定律还是可以很好地存在下去。

贝肯斯坦还是不服。

全世界所有的黑洞专家都站在霍金一边——只有一个例外,那就是贝肯斯坦的导师,约翰·惠勒。他告诉贝肯斯坦,“你的思想够疯狂了,它可能是对的。”在导师的鼓励下,贝肯斯坦奋勇向前,加强了他的猜想。他估算了为保留热力学第二定律,在气体包落入黑洞时,黑洞的熵应正好增加多少;他还估算了,落进来的气体能增大多少黑洞的面积。根据这些粗略估计,他导出了熵和面积之间的一个关系,他认为这个关系可能总会满足热力学第二定律;熵近似地等于视界面积除以一个与量子引力定律(那时还没有呢)相关的著名面积,普朗克-惠勒面积,2.61×10-66平方厘米。5(在以下两章我们将学习普朗克-惠勒面积的意义。)对10个太阳质量的黑洞来说,熵是黑洞面积,11 000平方公里,除以普朗克-惠勒面积,2.61×10-66平方厘米,结果大概是1079。

这是一个巨大的熵,代表着大量的随机性。这些随机性在哪儿呢?贝肯斯坦猜测在黑洞里。黑洞内部一定包含着大量的原子、分子或别的东西,所有这些东西都随机分布,可能分布方式的总数一定是101079。6

废话!大多数前沿黑洞物理学家,也包括霍金和我都这样反应。黑洞内包含着一个奇点,没有原子,也没有分子。

然而,不管怎么说,热力学定律和黑洞性质之间的相似总是令人惊讶的。

1972年8月,黑洞研究的黄金年代正活跃的时候,全世界的主要黑洞专家和约50名学生相聚在法国阿尔卑斯山上,紧张地做一个月的讲习和联合研究。地方还是9年前(1963)我学广义相对论的那个莱苏什暑期学校,还是面对勃朗峰那绿油油的山坡(第10章)。101963年我还是学生,现在,1972年,人家说我是专家了。早上,我们这些“专家们”互相交流,也向学生们讲过去5年的发现和我们现在努力的新方向。大多数下午的时间我们都在不断讨论新问题:诺维科夫和我关在小木屋里,想发现吸积到黑洞的气体发射X射线的规律(第8章);而在学校休息室的长椅上,我的学生普雷斯和特奥科尔斯基在探讨旋转黑洞对小干扰是否稳定(第7章);在我们上面50米的山坡上,巴丁、卡特尔和霍金在全神贯注地用爱因斯坦的广义相对论方程推导一组完整的黑洞演化定律。那真是难忘的田园诗,醉人的物理学。

月底,巴丁、卡特尔和霍金对黑洞力学定律的认识更牢了,这些定律与热力学定律有着惊人的相似。11实际上,只要以“熵”替代“视界面积”,以“温度”替代“视界表面引力”,我们就会发现,每一个黑洞定律都等同于一个热力学定律。7(所谓表面引力,粗略地说就是静止在视界上的人所感受的引力作用强度。)当贝肯斯坦(他是讲习班的50名学生之一)看到两组定律有那么完美的对应时,比以前更加相信视界面积就是黑洞的熵。相反,巴丁、卡特尔、霍金、我和其他专家却从这些对应中看出它严格证明了视界面积不可能充当黑洞的熵。假如是的话,表面引力就该充当黑洞的温度了,而温度不能是零。然而,热力学定律主张一切非零温度的事物都一定产生辐射(至少一点儿,家用取暖器就是这么工作的),而每个人都知道,黑洞不会发出任何东西。辐射会落进黑洞,但没有辐射能从黑洞跑出来。

假如贝肯斯坦能从他的直觉得到其逻辑结果,他会认定黑洞一定以某种方式具有有限的温度而且一定产生辐射,那么我们今天会把他看成了不起的先知。但贝肯斯坦不过是在瞎忙。他承认黑洞显然是不能辐射的,但仍然顽固地相信他的黑洞熵。

[1] 霍金的面积增加定理允许任何黑洞质量都能以引力波形式发射出去,这似乎与我们的直觉矛盾。熟悉代数的读者可以从下面这个例子找到满意的答案:两个无旋转黑洞结合成一个更大的无旋转黑洞。无旋转黑洞的表面积正比于视界周长的平方,从而也就正比于黑洞质量的平方。这样,霍金的定理认为,初始黑洞质量的平方和一定大于*最后黑洞质量的平方。简单的代数计算可以说明,这个质量约束条件允许最后黑洞的质量小于原来两个黑洞质量之和,这样也就允许一定的初始质量作为引力波发射出去。(*显然是“小于”的笔误。即使M2>M12+M22,仍然可能有M<M1+M2,这两个条件可以确定最多能有多少质量转化成为引力波。——译者)

[2] 显视界更精确的定义见下面的卡片12.1。

[3] 在《时空的大尺度结构》里,霍金就称它是“事件视界”。——译者

[4] 量子力学定律保证了原子和分子的分布状态数总是有限而不会是无限的,物理学家在定义熵时常以它的对数乘以一个与我们无关的常数,loge10×k,这里loge10是10的“自然对数”,2.30258…,k是“玻尔兹曼常数”,1.38062×10-16尔格每摄氏度。我在全书都将忽略这个常数。

[5] 普朗克-惠勒面积公式为G/c3,这里,G=6.670×10-8达因·厘米2/克2是牛顿引力常数,=1.055×10-27尔格·秒是普朗克量子力学常数,c=2.998×1010厘米/秒是光速。相关问题见第13,14章的有关脚注和这些章节的讨论。

[6] 101079的对数是1079(贝肯斯坦猜想的熵)。注意,101079是1后面跟1079个0,就是说,0的数目与宇宙的原子一样多。

[7] 我们知道,热力学有四个定律,现在将这四个定律与相应的黑洞力学定律并列在下面:第零定律:系统平衡时,温度处处相同;视界在平衡状态下,表面引力处处相同。第一定律:能量守恒定律(当然都是满足的)。第二定律:熵永不减少;视界面积永不减少。第三定律:不可能通过有限步骤达到绝对零度(-273.15℃);不可能通过有限步骤将黑洞表面引力减小到零。在不同场合,这些定律有不同的表述方式,但本质是相同的。——译者